Information theory explanation of the fluctuation theorem, maximum entropy production and self- organized criticality in non-equilibrium stationary states

نویسندگان

  • Roderick Dewar
  • R Dewar
چکیده

Jaynes’ information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p of the underlying microscopic phase space trajectories over a time interval of length τ satisfies p ∝ exp(τσ /2kB) where σ is the time-averaged rate of entropy production of . Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as τ → ∞; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth’s climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general information theoretic grounds underlines their relevance to a broad class of stationary, non-equilibrium systems. In turn, the accumulating empirical evidence for these results lends support to Jaynes’ formalism as a common predictive framework for equilibrium and non-equilibrium statistical mechanics. PACS numbers: 05.70.Ln, 65.40.Gr, 89.70.+c

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 Maximum Entropy Production and Non-equilibrium Statistical Mechanics

Over the last 30 years empirical evidence in favour of the Maximum Entropy Production (MEP) principle for non-equilibrium systems has been accumulating from studies of phenomena as diverse as planetary climates, crystal growth morphology, bacterial metabolism and photosynthesis. And yet MEP is still regarded by many as nothing other than a curiosity, largely because a theoretical justification ...

متن کامل

Violations of the fluctuation - dissipation theorem in glassy systems : basic notions and the numerical evidence

This review reports on the research done during the past years on violations of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy systems and the currently supporting knowledge gained from numerical simulation studies. It covers a broad range of non-stationary aging and stationary driven system...

متن کامل

Distribution of Entropy Production for a Colloidal Particle in a Nonequilibrium Steady State

For a colloidal particle driven by a constant force across a periodic potential, we investigate the distribution of entropy production both experimentally and theoretically. For short trajectories, the fluctuation theorem holds experimentally. The mean entropy production rate shows two regimes as a function of the applied force. Theoretically, both mean and variance of the pronounced non-Gaussi...

متن کامل

Modified fluctuation-dissipation theorem for general non-stationary states and application to the Glauber--Ising chain

In this paper, we present a general derivation of a modified fluctuation-dissipation theorem (MFDT) valid near an arbitrary non-stationary state for a system obeying Markovian dynamics. We show that the method for deriving modified fluctuation-dissipation theorems near non-equilibrium stationary states used by Prost et al (2009 Phys. Rev. Lett. 103 090601) is generalizable to non-stationary sta...

متن کامل

Minimum entropy production principle from a dynamical fluctuation law

The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distribution of occupation times for a class of Markov processes, we identify the entropy production as the large deviation rate function, up to leading order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003